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Vectorizing code for MPI reduction operations was recently shown to be useful. Hand-written
intrinsics were used for several x86 64 micro-architectures on the basis on the basis that a
compiler failed to auto-vectorize an example in the original code, although recent GCC succeeds
with around half the loops. Simple changes to the original code allow GCC to vectorize most
operations — more than done by hand for x86 64. Further simple changes allow recent GCC and
GNU libc to provide run-time dispatch on micro-architecture without the previous manual
programming. The result carries over to implementations for ARM and POWER without
needing to write more target-specific code with potential bugs. This may be a useful tutorial
example as well as potentially improving Open MPI.

1 Motivation and Previous Work

Zhong et al [1] discussed speeding up MPI reductions by vectorizing the operations, which was
shown to have a significant effect. They discussed at length the use of SIMD code in linear algebra
implementations (surprisingly without reference to BLIS [2, 3]), and stressed the use of AVX512
compiler intrinsics.1 The implementation is x86 64-specific (unless it works sufficiently well with
something like SIMD Everywhere on other architectures), and there seems not to be proper
consistency between compilers’ intrinsics implementations. While compiler auto-vectorization
was rejected in [1], this work presents an alternative view from experience, and exercises the
compiler. It was done initially to support a POWER9 system easily, but also provides better
support for x86 64.

The prior work in the paper’s discussion is mostly concerned with GEMM in Level 3 BLAS. In
contrast to Level 1 (like reductions) that requires careful structuring of the code, matching the
caches on the target prior to vectorization to achieve close to peak performance, and probably
manual pre-fetching. It is well-known then that performance is roughly proportional to SIMD
width, and doubled by fuse-multiply-add instructions.

Hand-crafted vectorization may not be necessary, however. BLIS’ generic C (‘reference’)
GEMM kernel compiled with reasonably recent GCC achieves ∼75% the performance of the
hand-optimized Haswell AVX2 DGEMM implementation; it is likely that the gap is down to
prefetching. The paper downplays the ability of compilers to auto-vectorize and mentions
problems making that work in terms of flags etc. At least for the loops under consideration, that
isn’t an issue, compared with admittedly time-consuming and error-prone hand coding. The
default flags that Open MPI configures already include vectorization for at least GCC, Intel, XL,
Clang, and PGI.
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1That requires care in linear algebra implementations like this, and elsewhere, due to the effect of possible clocking down
of the CPU using full-width AVX512 instructions. That means it isn’t a win for BLAS on Skylake CPUs with only one FMA
unit. (There may also be an effect from AVX(2), but smaller, and normally ignored.) Since reductions don’t have high
computational intensity, a priori one might expect at least full-width AVX512 to be a loss, and the case for it is unclear in an
Open MPI issue.
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In contrast to the suggestion in [1], every current compiler to hand on GNU/Linux (GCC,
Intel, IBM XL, PGI, and LLVM variants) can vectorize at least the sort of simple loops under
consideration. BLIS, for instance, now does with the C implementation of Level 1 operations like
AXPY, despite initial claims that GCC didn’t work.2 The statement in [1] that a compiler was
unable to vectorize the Open MPI code would be expected for GCC 4.8 generally, and with later
GCC for the two-buffer implementations. However, that is fixed simply with the help of GCC’s
diagnostics.

Despite myths about its poor optimization, the code GCC generates in this case appears good.
Its competitive performance on a computational benchmark set is left to subsequent note.

2 Implementation

The implementation of [1] is now in Open MPI 4.1. It lives in directory ompi/mca/op/avx, with the
original C implementation in the sibling base. This work is based on the 4.1.1 release, but op was
even with the master branch at the time. With only base and avx, POWER (the target of interest)
and ARM systems would appear not to benefit from vectorized reductions in the released code. In
fact, recent GCC, e.g. 8, vectorizes a good number of the operations as-is, but maybe not the most
relevant ones.

2.1 Fixes for Auto-vectorization

There are two things that typically need to be fixed to enable vectorization of simple loops without
dependencies or conditionals. One is to eschew IEEE-754 semantics for floating point operations,
e.g. using GCC’s -funsafe-math-optimizations. Although not strictly correct, that doesn’t cause
test suite failures in BLIS, for instance, and MPI doesn’t require the strictness anyway. That is
necessary for reductions, but the functions of interest here aren’t actually reductions, even if they
support MPI Reduce... operations. However, ARM needs it to vectorize at all with Neon, per the
GCC documentation, so it is used generally.

The other, most relevant here, is to arrange Fortran-style ‘storage association’ semantics
(basically avoid possible aliasing though pointers), which in C amounts to using restrict

appropriately.3 That’s obviously reasonable for Fortran-callable C code, and is assumed by the avx

implementation.
It is obviously also necessary to use an appropriate optimization level that includes

vectorization, e.g. GCC’s -O3 (or -Ofast, which includes also -funsafe-math-optimizations),
and specify an appropriate target.

2.2 Analysis and Modifications for Vectorization

The steps to improve the generic C implementation in base/op_base_functions.c are as follows.
They were initially done with GCC 10 on POWER. (GCC 10 provides cleaner diagnostics than
version 8, which is normally used on that RHEL7 POWER9 system, but doesn’t produce
significantly different optimization.)

First we need to ensure that it is compiled with suitable options. Although Open MPI defaults
to -O3, it seems safest to specify it to ensure vectorization in case non-default flags are configured.
Thus, in a preprocessor conditional for GCC 4.8 and above, add it along with simple unrolling
(which isn’t included at any optimization level), and lax floating point maths for Neon:

#pragma GCC optimize ("O3", "unsafe-math-optimizations", "unroll-loops")

To get information on GCC’s optimization, in the previously-built source, re-compile just
op_base_functions with additional diagnostics, e.g. -fopt-info-vec-missed. Delete
ompi/mca/base/op_base_functions.lo and run something like

make -C ompi/mca/op V=1 | grep op_base_functions.lo

2The omp simd pragmas BLIS uses are not actually necessary.
3However, the compiler may ‘version’ a loop to account for aliasing. That can be seen in optimization reports with recent

GCC for functions in the original op code.
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to see the compilation command line used by libtool. Run that from the op directory with
additional option -fopt-info-vec-missed. To find loops which failed, and why,4 log the stderr, or
pipe it into less and look for

missed: couldn’t vectorize loop

The failures are mostly from the aliasing analysis. To fix that, add restrict to the pointer
arguments of the functions in the template macros like OP FUNC. (configure requires C99, so
restrict is available.) As well as, for instance, in and out, do count to avoid a potentially
puzzling diagnostic that the number of iterations cannot be computed. (That diagnostic appears
many times elsewhere in Open MPI for loops that might benefit similarly if they’re
time-consuming.) While it’s not strictly necessary to fix the 3buff versions for GCC due to loop
versioning, it’s worth doing for consistency and possibly to help other compilers.

Just that gets the bulk of the operations vectorized. An exception is the logical operations,
with diagnostic “control flow in loop”. It arises from the ‘short-circuiting’ semantics of C’s
boolean operators, i.e. (assuming the variable values are either 0 or 1):

a && b ≡ a ? a : b

Short-circuiting isn’t useful when we’re running through the whole buffer so, after checking
the equivalence modulo short-circuiting in the C standard, modify the relevant operations by
replacing boolean operators with bit-wise equivalents: & instead of &&, etc. The result is
vectorizable. (An obvious refinement would be to introduce amortised short-circuiting tests,
assuming that it usually isn’t necessary to process the whole buffer. A test for breaking the main
loop could go after processing a block in a vectorizable sub-loop after unrolling the loop to an
appropriate depth. That extra work hasn’t been done.)

With that out of the way, most operations are vectorized, with loop versioning avoided. At
least on ppc64le, the 128-bit datatypes are missed (“no vectype for stmt”), perhaps surprisingly
with hardware 128-bit support. The other omission is minloc and maxloc, which may or may not
be amenable to vectorization; that hasn’t been investigated.

Notes Successful optimization reports from -fopt-info typically have output for multiple loops
at the same source line, probably with one then removed by unrolling. The original loops are
peeled to take care of remainder iterations from the runtime loop count modulo the SIMD vector
size. Typically the peeled code uses a shorter SIMD vector size than the main loop, if available.
The result isn’t obviously slower than the Duff’s device implementation of [1]. Various functions
are recognized as being the same, and aliased rather than generating code for each, notably plain
and Fortran-callable versions.

2.3 Dispatch by Micro-architecture

Although most operations are now vectorized, that’s only with code for a single target (defaulting
to SSE2 on x86 64). We may want to generate code to use multiple ISAs/micro-architectures and
benefit from the best level of support on a given system. POWER only has VSX SIMD to worry
about (assuming other differences between POWER8 and 9, currently, don’t matter), but ARMv8
may have SVE(2) as well as Neon SIMD. x86 64, of course, isn’t that simple. . . . Presumably
nothing else matters for HPC currently.

The avx implementation builds separate objects for AVX, AVX2, and AVX512, and dispatches
on the basis of run-time detected support, possibly overridden with MCA parameters. If only the
operations supplied in avx are or interest there’s no use for the optimized base, but we can
consider what to do with the simple approach which turns out to provide more anyway.

One solution would be to re-use the avx framework and build a version of the base functions
for each target of interest, with macros to mangle the function names appropriately in each case.
POWER and ARMv8 can do something similar to cpuid-based dispatch in the avx framework.5

With GCC 6+ on recent-enough GNU/Linux, like Debian 11 (since it depends on glibc 2.23+
for support), the easy solution is to use the target_clones function attribute. That generates an

4Consult the GCC Internals Manual if you see the obscure term ‘latch’.
5An example for Linux including ppc64le and aarch64 is https://github.com/loveshack/blis/blob/power/frame/

base/bli_cpuid.c.
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SSE2 AVX AVX2 AVX512 VSX
GCC 4.8.5 172 192 192
GCC 10.2.1 184 208 214 214 210
intrinsics 117 117 129
GCC 8, original 78 86 97 105 86

Table 1: Number of vectorized loops for the final code by x86 64 micro-architecture and for
POWER9 VSX. ‘intrinsics’ is the avx version. The last line is for the original version 4.1.1 code.

optimized version for each of the specified list of targets, with runtime dispatch. It doesn’t allow
selecting specific targets at run time, but that shouldn’t be needed outside testing. That is good
enough for this demonstration.

So, add a macro, say TARGETS, to each operation template macro like OP_FUNC, defined
appropriately for the architecture and compiler. TARGETS should default to empty but, under
conditionals for GCC, glibc, and __x86_64__ it can be defined as6

#define TARGETS __attribute__ ((target_clones \

("avx,arch=haswell,arch=knl,arch=skylake-avx512,default")))

Without prefer-vector-width=512 flag added to a target pragma, say, half width (256-bit)
AVX512 is used to avoid the potential down-clocking effect of using the full width. That isn’t an
obvious performance problem, as below.

For POWER, we can distinguish power9 from the power8 default similarly, but it isn’t clear if
that is worthwhile, and clones aren’t supported by glibc on the system of interest anyway. Both
use VSX SIMD. POWER9’s 64-bit integer additions don’t get any more loops vectorized. GCC 11
supports POWER10, given a recent gas, which vectorizes and extra six loops (64-bit integer
products).

On ARMv8, the SIMD choices are Neon (always present) and SVE(2). An a64fx target clone
was added to cover SVE, but the implementation hasn’t been run on ARM.

target clones, or an equivalent, appears not to be available in Clang or any other compiler,
although Intel’s has an option to do something similar by compilation unit rather than function. If
one must use another C compiler than GCC, where target clones would otherwise work, the
modified code will at least vectorize for its default target. However, there’s no obvious reason to
avoid GCC to compile the basic MPI library, even if a different compiler is used for the
non-portable Fortran interface; the ABI is well-defined, and GCC generally produces good code.

Availability The final implementation discussed is currently available from SourceHut.

3 Results

3.1 Compiler Vectorization Coverage v. Intrinsics

Though POWER was the target of interest, it’s worth comparing with the avx version on x86 64.
The vectorized base loops can be counted by adding -fopt-info-vec-optimized to the GCC flags
and piping stderr into

grep -i ’loop vectorized’ | sed ’s/ using .*$//’ | sort -u | wc -l

Examining the avx build, a way to count the operations it implements is
for a in ’’ 2 512; do nm avx/.libs/liblocal_ops_avx$a.a |

grep -c ompi_op_avx_[23]buff; done

Results are listed in table 1. The modified base is more comprehensive even with the RHEL7
base GCC (4.8), especially as it treats Fortran operation versions as aliases, so it will supplement
avx usefully. It is similarly comprehensive on POWER.

6KNL may not be worthwhile these days, but it needs a different AVX512 subset from SKX.
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3.2 Vectorized Code Quality

A sample operation (ompi_op_base_2buff_prod_double) for the SKX target was examined with
the MAQAO [4] code quality analyzer and compared with the equivalent avx version,
mpi_op_avx_2buff_mul_double_avx512.7 CQA showed the main loop to be fully vectorized, but
complained about the default 256-bit width for SKX code. The full width is probably not
worthwhile with low computational intensity, as above. That is supported by the benchmark
results below. MAQAO spotted that loop unrolling was missed initially, which was included in
the final version. (-O3’s unroll-and-jam is for loop nests.)

3.3 Benchmark

Some minimal speed tests were done on x86 64 and POWER9 with the new code. The source
contains a benchmark in test/datatype (built with make reduce local) which seems to be used
by the developers for testing, so that was run.

3.3.1 AVX

For AVX512, GCC 8 was used and the result run under Debian 11 on a 3.6 GHz SKX system with
(two AVX512 FMA units). The modified base code produced essentially the same times within
variability for the compiler- and manually-vectorized implementations. (Note that the former was
using half-width AVX512 and the latter full-width.) Many repetitions and large arrays are needed
for sufficiently long runs to time them reliably, and it isn’t clear how meaningful that is. Longer
runs do provide a reasonable number of samples for perf, which is more useful.

So reduce local was run under perf with short and long double precision buffers
(considering the 32 KB L1 and 8 MB L2 caches). Other operations and data types haven’t been
checked. The CPU was clocked down by the same amount in each case according to perf (to
3.5 GHz for long buffers and 3.4 GHz for short ones), so the avx and non-avx cycle count
percentages are directly comparable.

The results are in figures 1 and 2. The difference in functions of the two implementations, like
prod fortran real8 v. mul double, is due to the choice of alias for ones with identical code noted
above. Note the substantial cost paid to memmove (for alignment effects?).

3.3.2 POWER9

Similar measurements were made on the RHEL 7 POWER9 system (with 32 KB L1 and 10 MB L3
caches) that was the original interest, using GCC 8.4. In this case the original and modified base

were compared. The results in figure 3 and figure 4 only show benefit from vectorization with
short buffers. (The 2buff loops are not auto-vectorized in the original code, unlike the 3buff ones.)
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$ mpirun --bind-to core -n 1 perf record ./reduce_local \

-l 1000 -u 1000 -s 64 -t d -r 100000 -o prod,sum,min

MPI_PROD MPI_DOUBLE 64 count 1000 time (seconds/shifts) 0.00000013 0.00000016 0.00000016 0.00000016

MPI_SUM MPI_DOUBLE 64 count 1000 time (seconds/shifts) 0.00000012 0.00000016 0.00000016 0.00000016

MPI_MIN MPI_DOUBLE 64 count 1000 time (seconds/shifts) 0.00000012 0.00000016 0.00000016 0.00000016

# Event count (approx.): 5002050711

# Overhead Shared Object Symbol

# ........ ................... ................................................

78.40% reduce_local [.] main

5.61% libc-2.31.so [.] __memmove_avx_unaligned_erms

3.39% libmpi.so.40.30.1 [.] PMPI_Reduce_local

3.14% mca_op_avx.so [.] ompi_op_avx_2buff_mul_double_avx512

2.40% mca_op_avx.so [.] ompi_op_avx_2buff_min_double_avx512

2.35% mca_op_avx.so [.] ompi_op_avx_2buff_add_double_avx512

$ mpirun --mca op ^avx --bind-to core -n 1 perf record ./reduce_local \

-l 1000 -u 1000 -s 64 -t d -r 100000 -o prod,sum,min

MPI_PROD MPI_DOUBLE 64 count 1000 time (seconds/shifts) 0.00000011 0.00000016 0.00000016 0.00000016

MPI_SUM MPI_DOUBLE 64 count 1000 time (seconds/shifts) 0.00000011 0.00000016 0.00000016 0.00000016

MPI_MIN MPI_DOUBLE 64 count 1000 time (seconds/shifts) 0.00000011 0.00000016 0.00000016 0.00000016

# Event count (approx.): 4985446738

# Overhead Shared Object Symbol

# ........ ................. ...............................................................

80.41% reduce_local [.] main

4.91% libc-2.31.so [.] __memmove_avx_unaligned_erms

2.54% libmpi.so.40.30.1 [.] PMPI_Reduce_local

2.48% libmpi.so.40.30.1 [.] ompi_op_base_2buff_sum_fortran_real8.arch_skylake_avx512.3

2.34% libmpi.so.40.30.1 [.] ompi_op_base_2buff_min_fortran_real8.arch_skylake_avx512.3

2.14% libmpi.so.40.30.1 [.] ompi_op_base_2buff_prod_fortran_real8.arch_skylake_avx512.3

Figure 1: Output and perf results for reduce local on x86 64 with short buffers (reformatted for
presentation).
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$ mpirun -n 1 perf record ./reduce_local -l 1048576 -u 1048576 \

-s 64 -t d -r 100 -o prod,sum,min

MPI_PROD MPI_DOUBLE 64 count 1048576 time (seconds/shifts) 0.00116271 0.00115893 0.00117254 0.00116126

MPI_SUM MPI_DOUBLE 64 count 1048576 time (seconds/shifts) 0.00116873 0.00116338 0.00116366 0.00116891

MPI_MIN MPI_DOUBLE 64 count 1048576 time (seconds/shifts) 0.00120915 0.00120909 0.00121301 0.00121441

# Event count (approx.): 13807767124

# Overhead Shared Object Symbol

# ........ ................. ............................................

40.25% reduce_local [.] main

25.72% libc-2.31.so [.] __memmove_avx_unaligned_erms

11.52% libmpi.so.40.30.1 [.] ompi_op_avx_2buff_min_double_avx512

11.13% libmpi.so.40.30.1 [.] ompi_op_avx_2buff_add_double_avx512

11.03% libmpi.so.40.30.1 [.] ompi_op_avx_2buff_mul_double_avx512

$ mpirun --mca op ^avx -n 1 perf record ./reduce_local -l 1048576 -u 1048576 \

-s 64 -t d -r 100 -o prod,sum,min

MPI_PROD MPI_DOUBLE 64 count 1048576 time (seconds/shifts) 0.00110719 0.00111214 0.00112716 0.00110833

MPI_SUM MPI_DOUBLE 64 count 1048576 time (seconds/shifts) 0.00110870 0.00111356 0.00111279 0.00111901

MPI_MIN MPI_DOUBLE 64 count 1048576 time (seconds/shifts) 0.00114017 0.00115219 0.00115465 0.00115664

# Event count (approx.): 13315039004

# Overhead Shared Object Symbol

# ........ ................. ...............................................................

40.28% reduce_local [.] main

26.01% libc-2.31.so [.] __memmove_avx_unaligned_erms

11.37% libmpi.so.40.30.1 [.] ompi_op_base_2buff_min_fortran_real8.arch_skylake_avx512.3

10.99% libmpi.so.40.30.1 [.] ompi_op_base_2buff_prod_fortran_real8.arch_skylake_avx512.3

10.98% libmpi.so.40.30.1 [.] ompi_op_base_2buff_sum_fortran_real8.arch_skylake_avx512.3

Figure 2: Output and perf results for reduce local on x86 64 with long buffers (reformatted for
presentation).
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# New code

$ mpirun --bind-to core -n 1 perf record ./reduce_local -l 1000 -u 1000 \

-s 64 -t d -r 100000 -o prod,sum,min

MPI_PROD MPI_DOUBLE 64 count 1000 time (seconds/shifts) 0.00000064 0.00000064 0.00000061 0.00000064

MPI_SUM MPI_DOUBLE 64 count 1000 time (seconds/shifts) 0.00000061 0.00000064 0.00000061 0.00000064

MPI_MIN MPI_DOUBLE 64 count 1000 time (seconds/shifts) 0.00000000 0.00000070 0.00000067 0.00000070

# Event count (approx.): 7888156140

# Overhead Shared Object Symbol

# ........ ....................... ......................................................

40.74% lt-reduce_local [.] main

12.82% libmpi.so.40.30.1 [.] ompi_op_base_2buff_sum_double

11.16% libmpi.so.40.30.1 [.] ompi_op_base_2buff_min_double

11.07% libmpi.so.40.30.1 [.] ompi_op_base_2buff_prod_double

10.08% libc-2.17.so [.] __memcpy_power7

4.17% libmpi.so.40.30.1 [.] PMPI_Reduce_local

2.17% [vdso] [.] __do_get_tspec

# Original 4.1.1

$ mpirun --bind-to core -n 1 perf record ./reduce_local -l 1000 -u 1000 \

-s 64 -t d -r 100000 -o prod,sum,min

MPI_PROD MPI_DOUBLE 64 count 1000 time (seconds/shifts) 0.00000121 0.00000121 0.00000121 0.00000121

MPI_SUM MPI_DOUBLE 64 count 1000 time (seconds/shifts) 0.00000121 0.00000121 0.00000121 0.00000121

MPI_MIN MPI_DOUBLE 64 count 1000 time (seconds/shifts) 0.00000000 0.00000130 0.00000131 0.00000130

# Event count (approx.): 10482521509

# Overhead Shared Object Symbol

# ........ ......................... ........................................................

34.28% lt-reduce_local [.] main

17.48% libmpi.so.40.30.1 [.] ompi_op_base_2buff_min_double

15.50% libmpi.so.40.30.1 [.] ompi_op_base_2buff_prod_double

15.19% libmpi.so.40.30.1 [.] ompi_op_base_2buff_sum_double

7.62% libc-2.17.so [.] __memcpy_power7

Figure 3: Output and perf results for reduce local with short buffers on POWER9 (reformatted
for presentation).
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# New code

$ mpirun --bind-to core -n 1 perf record ./reduce_local -l 1048576 -u 1048576 \

-s 64 -t d -r 100 -o prod,sum,min

MPI_PROD MPI_DOUBLE 64 count 1048576 time (seconds/shifts) 0.00062897 0.00063674 0.00061439 0.00062571

MPI_SUM MPI_DOUBLE 64 count 1048576 time (seconds/shifts) 0.00063022 0.00063336 0.00062052 0.00062694

MPI_MIN MPI_DOUBLE 64 count 1048576 time (seconds/shifts) 0.00064590 0.00065579 0.00063064 0.00065148

# Event count (approx.): 9234819475

#

# Overhead Shared Object Symbol

# ........ ...................... ..............................................................

#

40.33% lt-reduce_local [.] main

24.35% libc-2.17.so [.] __memcpy_power7

10.74% libmpi.so.40.30.1 [.] ompi_op_base_2buff_min_double

10.18% libmpi.so.40.30.1 [.] ompi_op_base_2buff_sum_double

10.04% libmpi.so.40.30.1 [.] ompi_op_base_2buff_prod_double

# Original 4.1.1

$ mpirun --bind-to core -n 1 perf record ./reduce_local -l 1048576 -u 1048576 \

-s 64 -t d -r 100 -o prod,sum,min

MPI_PROD MPI_DOUBLE 64 count 1048576 time (seconds/shifts) 0.00065604 0.00063306 0.00061443 0.00062531

MPI_SUM MPI_DOUBLE 64 count 1048576 time (seconds/shifts) 0.00063490 0.00063549 0.00061839 0.00062829

MPI_MIN MPI_DOUBLE 64 count 1048576 time (seconds/shifts) 0.00065571 0.00067283 0.00064353 0.00066278

# Event count (approx.): 9225501608

# Overhead Shared Object Symbol

# ........ ...................... ..............................................................

40.34% lt-reduce_local [.] main

24.23% libc-2.17.so [.] __memcpy_power7

10.81% libmpi.so.40.30.1 [.] ompi_op_base_2buff_min_double

10.14% libmpi.so.40.30.1 [.] ompi_op_base_2buff_prod_double

10.12% libmpi.so.40.30.1 [.] ompi_op_base_2buff_sum_double

Figure 4: Output and perf results for reduce local with long buffers on POWER9 (reformatted for
presentation).
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